MDT
MDT

Cours du Measurable Data Token

$0,019829
-$0,00258
(-11,51 %)
Évolution du cours sur les dernières 24 heures
USDUSD
Que ressentez-vous pour MDT aujourd’hui ?
Donnez votre avis en ajoutant un pouce vers le haut si vous pensez que le cours Ethereum et la valeur Ethereum sont en hausse, ou un pouce en bas si vous estimez que le prix Ethereum et le ETH / USD vont baisser. Suivez l’évolution Ethereum en temps réel et consultez le Ethereum cours dollar et le Ethereum cours euro pour anticiper les tendances du marché.
Votez pour voir les résultats

Infos sur le marché du Measurable Data Token

Cap. boursière
La cap. boursière est calculée en multipliant l’offre en circulation d’un jeton par son dernier cours.
Cap. boursière = offre en circulation × dernier cours
Approvisionnement en circulation
La quantité totale d’un jeton qui est accessible au public sur le marché.
Classement de cap. boursière
La position d’un jeton dans le classement par cap. boursière.
Sommet historique
Cours le plus élevé atteint par un jeton au cours de son historique de trading.
Minimum historique
Cours le plus bas atteint par un jeton au cours de son historique de trading.
Cap. boursière
$12,07M
Approvisionnement en circulation
606 319 736 MDT
60,63 % de
1 000 000 000 MDT
Classement de cap. boursière
--
Audits
CertiK
Dernier audit : --
Pic sur 24 h
$0,022918
Creux sur 24 h
$0,019489
Sommet historique
$0,56999
-96,53 % (-$0,55016)
Dernière mise à jour : 11 janv. 2018
Minimum historique
$0,0016000
+1 139,33 % (+$0,018229)
Dernière mise à jour : 17 déc. 2018

Prix Measurable Data Token aujourd’hui en USD

Le cours de Measurable Data Token est actuellement de $0,019829. Au cours des dernières 24 heures, la valeur Measurable Data Token a a diminué de -11,51 %. Il a actuellement une offre en circulation de 606 319 736 MDT et une offre maximale de 1 000 000 000 MDT, ce qui lui donne une capitalisation boursière totalement diluée de $12,07M. Actuellement, le jeton Measurable Data Token occupe la 0 position du classement par capitalisation boursière. Le cours Measurable Data Token/USD est mis à jour en temps réel.
Aujourd'hui
-$0,00258
-11,51 %
7 jours
-$0,00606
-23,41 %
30 jours
-$0,00807
-28,93 %
3 mois
-$0,04246
-68,17 %

À propos du Measurable Data Token (MDT)

3.6/5
Certik
3.5
05/04/2025
CyberScope
3.7
06/04/2025
La notation fournie correspond à une notation agrégée qui est collectée par OKX à partir des sources fournies. Elle n’est indiquée qu’à titre indicatif. OKX ne garantit ni la qualité ni l’exactitude des notations. Elle n’est pas destinée à dispenser (i) des conseils ou recommandations en matière d’investissement ; elle ne doit pas (ii) non plus être considérée comme une invitation à acheter, à vendre ni à détenir des actifs numériques, ni (iii) comme des conseils financiers, comptables, juridiques ou fiscaux. Les actifs numériques (dont les stablecoins et les NFT) présentent un niveau de risque élevé ; leur valeur peut varier considérablement, voire devenir nulle. Les prix et les performances des actifs numériques ne sont pas garantis et peuvent changer sans préavis. Vos actifs numériques ne sont pas couverts par une assurance contre les pertes potentielles. Les rendements historiques ne constituent pas un indicateur des rendements futurs. OKX ne garantit aucun rendement, ni le remboursement du capital et des intérêts. Évaluez attentivement votre situation financière pour déterminer si vous êtes en mesure de détenir des actifs numériques ou de réaliser des activités de trading. Demandez conseil auprès de votre expert juridique/fiscal/en investissement pour toute question portant sur votre propre situation.
Afficher plus
  • Site web officiel
  • Livre blanc
  • Github
  • Explorateur de blocs
  • À propos des sites Web tiers
    À propos des sites Web tiers
    En utilisant le site web tiers (« SWT »), vous acceptez que toute utilisation du SWT soit sujette aux conditions du SWT et gouvernée par celles-ci. Sauf mention écrite expresse, OKX et ses affiliés (« OKX ») ne sont en aucun cas associés au propriétaire ni à l’opérateur du SWT. Vous acceptez le fait qu’OKX ne soit pas responsable des pertes, dommages ni de toutes autres conséquences découlant de votre utilisation du SWT. Veuillez noter que l’utilisation d’un SWT peut entraîner une perte ou une diminution de vos actifs.

Measurable Data Token (MDT) est un projet qui vise à créer une économie des données permettant aux utilisateurs de partager, échanger et monétiser des informations en échange d'incitations. En tant qu'économie des données décentralisée, Measurable Data Token se concentre à rendre les données de trading plus éthique, basé sur le consentement et transparent. L'écosystème de trading unique exploite la technologie de la blockchain pour connecter les vendeurs et les acheteurs de données au sein d'un écosystème immuable.

Qu'est-ce que le Measurable Data Token?

Measurable Data Token est un projet basé sur Ethereum qui vise à aider les utilisateurs à obtenir une compensation équitable pour les données qu'ils partagent avec les acheteurs. Il vise à éliminer les corporations qui exploitent les données des utilisateurs à des fins lucratives. Le projet vise à changer le statu quo en redonnant le pouvoir aux utilisateurs.

Le partage des données est récompensé en utilisant des jetons MDT, ce qui favorise une distribution plus équitable et accroît la valeur du jeton natif.

L'équipe du Measurable Data Token

Heatherm Huang, co-fondateur de MailTime, a eu l'idée du projet Measurable Data Token. Huang a également créé la Measurable Foundation, une entreprise responsable de la maintenance du MDT. Outre lui, l'équipe du Measurable Data Token compte également de nombreux experts en blockchain et en extraction de données, notamment Wing Chan, ingénieur logiciel, Matt Lung, ingénieur logiciel principal, et bien d'autres.

Comment fonctionne le Measurable Data Token?

Measurable Data Token repose sur la transparence. Les acheteurs de données placent des demandes inviolables sur la blockchain. Les fournisseurs de données invoquent des points de données spécifiques à partir de leurs référentiels, tout comme les portefeuilles de données, en utilisant leur clé publique et les envoient aux acheteurs. Les acheteurs n'ont accès qu'aux données que le vendeur souhaite partager.

Des smart contracts spécifiques à l'écosystème gèrent les conditions spécifiées pour toutes les transactions liées aux données. Les détails du contrat intelligent comprennent les dimensions des données, la clé publique de l'utilisateur, le pourcentage de récompense, etc. Le paiement des données est effectué uniquement lorsque les conditions du smart contract sont remplies et les récompenses sont débloquées selon le code.

Le jeton natif du Measurable Data Token: MDT

MDT est le jeton natif de l'écosystème du Measurable Data Token. MDT est un jeton ERC-20 compatible avec la plupart des portefeuilles froids et chauds. Les jetons ont une limite d'approvisionnement de 1 milliard, alloués sous forme d'incitations et de récompenses. Étant donné qu'il existe une limite stricte sur l'approvisionnement, le modèle économique des jetons devrait passer d'une désinflation à une déflation, car il est courant que certains jetons soient perdus dans les portefeuilles.

Cas d'utilisation de MDT

MDT est un élément essentiel de l'écosystème du Measurable Data Token. Son principal cas d'utilisation est de récompenser les utilisateurs pour le partage de données, fonctionnant essentiellement comme une forme de paiement. Par exemple, les jetons MDT incitent les utilisateurs qui vendent leurs données à des entreprises de jeux et autres pour les aider dans l'analyse du marché.

De plus, les jetons MDT ont quelques autres cas d'utilisation, notamment la facilitation des transactions de données au sein de l'écosystème, un rôle dans la gouvernance de la plateforme et la possibilité de gagner des récompenses de staking en offrant une liquidité basée sur le MDT.

Distribution de MDT

Les jetons MDT sont distribués comme suit:

  • 24 % à l'équipe de MailTime
  • 11 % aux conseillers et aux premiers investisseurs
  • 15 % au pool de croissance
  • 35 % lors d'événements de distribution de jetons tels que les airdrops
  • 15 % pour la prévente

Measurable Data Token (MDT) et l'avenir de l'économie basée sur la blockchain

Les marchés des données sont essentiels car ils permettent aux utilisateurs de se connecter aux entreprises, les aidant ainsi à mieux comprendre les marchés. Mais le processus moderne est fortement centralisé. Measurable Data Token vise à changer tout cela en offrant un marché de données décentralisé, suffisamment innovant pour se transformer en une nouvelle économie.

Afficher plus
Afficher moins

FAQ Measurable Data Token

Qu'est-ce que le Measurable Data Token?

Le Measurable Data Token est un marché de données décentralisé alimenté par la blockchain qui traite des données anonymes et garantit la confidentialité. Il permet la connexion des acheteurs et des vendeurs de manière immuable et inviolable grâce à des contrats intelligents et à son jeton natif MDT.

Quels sont les avantages du Measurable Data Token?

Measurable Data Token permet aux entreprises de se connecter de manière anonyme aux vendeurs de données, leur permettant de proposer ce qu'ils peuvent pour le bon prix. L'écosystème dispose d'une application mobile appelée RewardMe, ce qui facilite l'intégration transparente des utilisateurs.

Où puis-je acheter du MDT?

Vous pouvez facilement acheter des jetons MDT sur la plateforme de cryptomonnaie OKX. Le terminal de trading au comptant d'OKX propose la paire de trading MDT/USDT.

Vous pouvez également échanger vos cryptomonnaies existantes, notamment XRP (XRP), Cardano (ADA), Solana (SOL) et Chainlink (LINK), contre du MDT sans frais et sans slippage de prix en utilisant OKX Convert.

Combien vaut 1 Measurable Data Token aujourd’hui ?
Actuellement, 1 Measurable Data Token vaut $0,019829. Vous recherchez des informations sur les mouvements de prix du token Measurable Data Token ? Vous êtes au bon endroit ! Découvrez les graphiques les plus récents sur le token Measurable Data Token et tradez de manière responsable avec OKX.
Qu'est-ce que la cryptomonnaie ?
Les cryptomonnaies, telles que les Measurable Data Token, sont des actifs numériques fonctionnant sur un registre public appelé blockchain. En savoir plus sur les jetons proposés sur OKX et leurs différents attributs, notamment le cours en direct et les graphiques en temps réel.
Quand la cryptomonnaie a-t-elle été inventée ?
En raison de la crise financière de 2008, l’intérêt porté à la finance décentralisée a explosé. Le Bitcoin offrait une solution novatrice en tant qu’actif numérique sécurisé sur un réseau décentralisé. De nombreux jetons tels que les Measurable Data Token ont également été créés depuis lors.
Le cours du Measurable Data Token va-t-il augmenter aujourd'hui ?
Consultez notre Page de prédiction des cours de Measurable Data Token pour prévoir les cours à venir et déterminer vos objectifs de cours.

Déclaration ESG

Les réglementations ESG (approche environnementale, sociale et de gouvernance) relatives aux actifs crypto visent à réduire leur impact environnemental (par exemple : l'extraction minière à forte intensité énergétique), à promouvoir la transparence et à garantir des pratiques de gouvernance éthiques afin d'aligner le secteur des cryptos sur des objectifs plus larges en matière de durabilité et de société. Ces réglementations encouragent le respect de normes qui atténuent les risques et favorisent la confiance dans les actifs numériques.
Détails de l’actif
Nom
OKcoin Europe LTD
Identifiant de l’entité juridique concernée
54930069NLWEIGLHXU42
Nom de l’actif crypto
Measurable Data Token
Mécanisme de consensus
Measurable Data Token is present on the following networks: base, binance_smart_chain, ethereum, optimism, solana, tron. The consensus mechanism of the Base protocol, an Ethereum Layer 2 solution launched by Coinbase, utilizes Optimistic Rollups for scaling built on the Optimism software development kit (SDK). Key Components: 1. Optimistic Rollups: Assumption of Validity: Transactions are assumed valid by default and are processed off-chain. Instead of proving the validity of every transaction, the system assumes they are correct unless challenged. Fraud Proofs: If there is a suspicion of fraud, a challenge mechanism (fault proof) allows anyone to dispute the validity of a transaction within a specific time frame. If a transaction is found to be fraudulent, it is rolled back, and the dishonest actor is penalized. 2. Sequencer: Transaction Ordering: The sequencer is responsible for ordering transactions and creating batches to be processed off-chain. Block Production: It constructs and executes Layer 2 blocks, which are then submitted to Ethereum (Layer 1) for finality. State Updates: Provides transaction confirmations and state updates, ensuring the network's state remains consistent and accurate. 3. Interaction with Ethereum: On-Chain Contracts: Optimistic Rollups use smart contracts deployed on Ethereum to manage rollup blocks, monitor state updates, and track user deposits. Off-Chain Computation: Most computations and state storage occur off-chain, enhancing scalability and reducing fees. 4. Security and Decentralization: Modular OP Stack: Base is built on the open-source OP Stack from Optimism, which is designed to be highly modular and customizable. Commitment Posting: Periodically, the post-transaction state is committed to Ethereum, ensuring the security and integrity of the Layer 2 transactions. Censorship Resistance: The architecture provides censorship resistance equivalent to Ethereum, as it allows direct submission of transactions to the sequencer. Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security. Core Components 1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network’s security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security. 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security. 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network. 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB. 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network’s security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance. 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently. The Ethereum network uses a Proof-of-Stake Consensus Mechanism to validate new transactions on the blockchain. Core Components 1. Validators: Validators are responsible for proposing and validating new blocks. To become a validator, a user must deposit (stake) 32 ETH into a smart contract. This stake acts as collateral and can be slashed if the validator behaves dishonestly. 2. Beacon Chain: The Beacon Chain is the backbone of Ethereum 2.0. It coordinates the network of validators and manages the consensus protocol. It is responsible for creating new blocks, organizing validators into committees, and implementing the finality of blocks. Consensus Process 1. Block Proposal: Validators are chosen randomly to propose new blocks. This selection is based on a weighted random function (WRF), where the weight is determined by the amount of ETH staked. 2. Attestation: Validators not proposing a block participate in attestation. They attest to the validity of the proposed block by voting for it. Attestations are then aggregated to form a single proof of the block’s validity. 3. Committees: Validators are organized into committees to streamline the validation process. Each committee is responsible for validating blocks within a specific shard or the Beacon Chain itself. This ensures decentralization and security, as a smaller group of validators can quickly reach consensus. 4. Finality: Ethereum 2.0 uses a mechanism called Casper FFG (Friendly Finality Gadget) to achieve finality. Finality means that a block and its transactions are considered irreversible and confirmed. Validators vote on the finality of blocks, and once a supermajority is reached, the block is finalized. 5. Incentives and Penalties: Validators earn rewards for participating in the network, including proposing blocks and attesting to their validity. Conversely, validators can be penalized (slashed) for malicious behavior, such as double-signing or being offline for extended periods. This ensures honest participation and network security. Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain. Core Components 1. Optimistic Rollups: Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain. State Commitments: The state of these transactions is periodically committed to the Ethereum main chain. 2. Sequencers: Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches. State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain. Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum. 3. Fraud Proofs: Assumption of Validity: Transactions are assumed to be valid by default. Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof. Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized. Consensus Process 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches. 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state. 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum. 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid. Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud. Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty. 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent. Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security. Here’s a detailed explanation of how these mechanisms work: Core Concepts 1. Proof of History (PoH): Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time. Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions. 2. Proof of Stake (PoS): Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks. Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security. Consensus Process 1. Transaction Validation: Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network’s criteria, such as having correct signatures and sufficient funds. 2. PoH Sequence Generation: A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network. 3. Block Production: The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order. 4. Consensus and Finalization: Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized. Security and Economic Incentives 1. Incentives for Validators: Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator’s stake and performance. Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently. 2. Security: Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens. Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators. 3. Economic Penalties: Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions. The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency. Here's a breakdown of how it works: 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators. 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second. 3. Voting and Governance: Tron’s DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system’s parameters. Voting power is proportional to the amount of TRX (Tron’s native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making. 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.
Mécanismes d’incitation et frais applicables
Measurable Data Token is present on the following networks: base, binance_smart_chain, ethereum, optimism, solana, tron. Base, an Ethereum Layer 2 scaling solution, uses a combination of economic incentives and security mechanisms to ensure the integrity and security of transactions. Base leverages Optimistic Rollups to enhance scalability while maintaining security. Incentive Mechanisms 1. Validators and Sequencers: Sequencers: In Base, sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a crucial role in maintaining network efficiency and throughput. Validator Rewards: Validators earn rewards for participating in the consensus process. These rewards can include transaction fees and additional protocol incentives. 2. Economic Incentives: Transaction Fees: Sequencers earn transaction fees from users who want their transactions processed. These fees incentivize sequencers to operate honestly and efficiently. Challenge Rewards: Users who successfully challenge invalid transactions by submitting fraud proofs are rewarded. This mechanism encourages the community to actively monitor and ensure the correctness of transactions. 3. Penalties for Malicious Behavior: Economic Penalties: Validators or sequencers that act maliciously, such as including invalid transactions, face economic penalties. These penalties can include forfeiture of staked tokens or other forms of economic loss. Fraud Proofs: If a transaction is challenged and found to be invalid, the dishonest party (sequencer) faces penalties, and the state is reverted. This discourages malicious behavior and ensures network integrity. Fees Applicable on the Base Blockchain Protocol 1. Transaction Fees: Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than those on the Ethereum mainnet due to the reduced computational load on the main chain. Cost Efficiency: By aggregating multiple transactions into a single batch, Base reduces the overall cost per transaction, making it more economical for users. 2. L1 Data Fees: Posting Batches to Ethereum: Periodically, state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum. Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions. 3. Smart Contract Fees: Execution Costs: Fees for deploying and interacting with smart contracts on Base are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume. Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators. Incentive Mechanisms 1. Validators: Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards. Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks. 2. Delegators: Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks. Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network’s security and decentralization by choosing reliable validators. 3. Candidates: Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience. 4. Economic Security: Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network. Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets. Fees on the Binance Smart Chain 5. Transaction Fees: Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators. Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet. 6. Block Rewards: Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions. 7. Cross-Chain Fees: Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience. 8. Smart Contract Fees: Deployment and Execution Costs: Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform. Ethereum, particularly after transitioning to Ethereum 2.0 (Eth2), employs a Proof-of-Stake (PoS) consensus mechanism to secure its network. The incentives for validators and the fee structures play crucial roles in maintaining the security and efficiency of the blockchain. Incentive Mechanisms 1. Staking Rewards: Validator Rewards: Validators are essential to the PoS mechanism. They are responsible for proposing and validating new blocks. To participate, they must stake a minimum of 32 ETH. In return, they earn rewards for their contributions, which are paid out in ETH. These rewards are a combination of newly minted ETH and transaction fees from the blocks they validate. Reward Rate: The reward rate for validators is dynamic and depends on the total amount of ETH staked in the network. The more ETH staked, the lower the individual reward rate, and vice versa. This is designed to balance the network's security and the incentive to participate. 2. Transaction Fees: Base Fee: After the implementation of Ethereum Improvement Proposal (EIP) 1559, the transaction fee model changed to include a base fee that is burned (i.e., removed from circulation). This base fee adjusts dynamically based on network demand, aiming to stabilize transaction fees and reduce volatility. Priority Fee (Tip): Users can also include a priority fee (tip) to incentivize validators to include their transactions more quickly. This fee goes directly to the validators, providing them with an additional incentive to process transactions efficiently. 3. Penalties for Malicious Behavior: Slashing: Validators face penalties (slashing) if they engage in malicious behavior, such as double-signing or validating incorrect information. Slashing results in the loss of a portion of their staked ETH, discouraging bad actors and ensuring that validators act in the network's best interest. Inactivity Penalties: Validators also face penalties for prolonged inactivity. This ensures that validators remain active and engaged in maintaining the network's security and operation. Fees Applicable on the Ethereum Blockchain 1. Gas Fees: Calculation: Gas fees are calculated based on the computational complexity of transactions and smart contract executions. Each operation on the Ethereum Virtual Machine (EVM) has an associated gas cost. Dynamic Adjustment: The base fee introduced by EIP-1559 dynamically adjusts according to network congestion. When demand for block space is high, the base fee increases, and when demand is low, it decreases. 2. Smart Contract Fees: Deployment and Interaction: Deploying a smart contract on Ethereum involves paying gas fees proportional to the contract's complexity and size. Interacting with deployed smart contracts (e.g., executing functions, transferring tokens) also incurs gas fees. Optimizations: Developers are incentivized to optimize their smart contracts to minimize gas usage, making transactions more cost-effective for users. 3. Asset Transfer Fees: Token Transfers: Transferring ERC-20 or other token standards involves gas fees. These fees vary based on the token's contract implementation and the current network demand. Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization. Here's an in-depth look at the incentive mechanisms and applicable fees within the Optimism protocol: Incentive Mechanisms 1. Sequencers: Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-chain. They play a critical role in maintaining the efficiency and speed of the network. Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately. 2. Validators and Fraud Proofs: Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality. Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted. Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security. 3. Economic Penalties: Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior. Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards. Fees Applicable on the Optimism Layer 2 Protocol 1. Transaction Fees: Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain. Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users. 2. L1 Data Fees: Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum. Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions. 3. Smart Contract Fees: Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume. Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions. Here’s a detailed explanation of the incentive mechanisms and applicable fees: Incentive Mechanisms 4. Validators: Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks. Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity. 5. Delegators: Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization. 6. Economic Security: Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network. Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 7. Transaction Fees: Low and Predictable Fees: Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum. Fee Structure: Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth. 8. Rent Fees: State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network. 9. Smart Contract Fees: Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume. The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation. Here's how the incentive mechanism and applicable fees work: Incentive Mechanism: 1. Super Representatives (SRs) Rewards: Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens. Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently. 2. Voting and Delegation: TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens. Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns. Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security. 3. Incentive for SRs: SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions. Applicable Fees: 1. Transaction Fees: Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network. 2. Storage Fees: Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data. 3. Energy and Bandwidth: Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive "energy," which is required to execute transactions and interact with smart contracts. Bandwidth: Each user is allocated a certain amount of bandwidth based on their TRX holdings. If users exceed their allotted bandwidth, they can pay for additional bandwidth in TRX tokens.
Début de la période à laquelle se rapporte la déclaration
2024-04-05
Fin de la période à laquelle se rapporte la déclaration
2025-04-05
Rapport sur l'énergie
Consommation énergétique
81.59457 (kWh/a)
Sources de consommation d’énergie et méthodologies
The energy consumption of this asset is aggregated across multiple components: To determine the energy consumption of a token, the energy consumption of the network(s) base, binance_smart_chain, ethereum, optimism, solana, tron is calculated first. Based on the crypto asset's gas consumption per network, the share of the total consumption of the respective network that is assigned to this asset is defined. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
Avis de non-responsabilité
Le contenu social sur cette page (« Contenu »), y compris mais sans s’y limiter les tweets et les statistiques fournis par LunarCrush, est issu de tiers et fourni « tel quel » à des fins d’information uniquement. OKX ne garantit ni la qualité ni l’exactitude du Contenu, et le Contenu ne représente pas les opinions d’OKX. Il n’est pas destiné à dispenser (i) des conseils ou recommandations en matière d’investissement ; il ne doit pas (ii) non plus être considéré comme une invitation à acheter, à vendre ni à détenir des actifs numériques, ni (iii) comme des conseils financiers, comptables, juridiques ou fiscaux. Les actifs numériques (dont les stablecoins et les NFT) présentent un niveau de risque élevé, et leur valeur peut varier considérablement. Les cours et les performances des actifs numériques ne sont pas garantis et peuvent changer sans préavis. OKX ne fournit aucune recommandation en matière d’investissement ou d’actif. Évaluez attentivement votre situation financière pour déterminer si vous êtes en mesure de détenir ou de trader des actifs numériques. Demandez conseil auprès de votre expert juridique/fiscal/en investissement pour toute question portant sur votre propre situation. Pour plus de détails, consultez nos Conditions d’utilisation et notre Avertissement sur les risques. En utilisant le site Web tiers (« SWT »), vous acceptez que toute utilisation du SWT soit soumise et régie par les conditions du SWT. Sauf mention écrite expresse, OKX et ses sociétés affiliées (« OKX ») ne sont en aucun cas associées au propriétaire ou à l’exploitant du SWT. Vous acceptez qu’OKX ne soit responsable d’aucune perte, d’aucun dommage et d’aucune autre conséquence découlant de votre utilisation du SWT. Sachez que l’utilisation d’un SWT peut déboucher sur la perte ou la baisse de vos actifs. Le produit peut ne pas être disponible dans toutes les juridictions.